Development of a multistep process for battery-grade Li₂CO₃ production


Lithium recovery from geothermal brines in the upper Rhine Valley

T. Skarke, M. Holzapfel, R. Hanich-Spahn, F. Klein Fraunhofer-Institut für Chemische Technologie ICT, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany) Contact: tamara.skarke@ict.fraunhofer.de

Motivation

Global demand for lithium is increasing almost daily, largely due to the growing demand for lithium-ion batteries. However, the largest production sites are mostly located outside Europe and are concentrated in just a few countries, making Europe highly dependent on them. To counteract this, the EU has introduced sustainability regulations for batteries^[1] and is promoting the extraction of lithium from various raw materials within Europe. In addition to mineral deposits, the water from geothermal plants in the Upper Rhine Valley is also being considered as a potential lithium source.

Four-Step purification and recovery process for Li₂CO₃

Methodology

Synthetic desorption solutions (50 L) produced by KIT and EnBW^[2] were used as feed. Each process step was performed batchwise:

- 1. Ion Exchange cation exchange resin, loaded with LiOH, regenerated with HCl.
- 2. Reverse Osmosis spiral-wound thin-film composite membrane (2.8 m² surface).
- **3. Electrodialysis (Bipolar Membranes)** three-chamber setup, with LiOH as product and HCl as side-product.
- **4.** CO_2 Precipitation Conversion to Li_2CO_3 via CO_2 sparging, followed by filtration, washing, and drying to battery-grade purity (> 99%).

LiCORNE

The EU project LiCORNE is part of the Horizon 2020 cluster and consists of 16 partners from research institutions and industry across Europe and beyond. The project aims to extract battery-grade lithium chemicals from three European sources: mineral deposits (pegmatite), geothermal energy water from the Rhine Graben, and aged cathode material from batteries. Various environmentally friendly and sustainable processes for lithium extraction will also be tested. The various extraction methods, from mining to the finished product, will be evaluated in parallel through LCA and LCC studies.

Further Competences in Lithium Processing

In addition to the presented process chain, ICT provides further methods that could be applied for lithium recovery:

- Supercritical CO₂ precipitation selective carbonate formation
- Advanced membrane techniques e.g. nanofiltration for divalent ion separation
- Free-Flow Electrophoresis (FFE) innovative approach to separate lithium from sodium

Outlook

The next steps could be as follows:

- Testing of real desorption solutions
- Increase in turnover, Up-scaling
- Further cost reduction

We would like to thank our partners:

- Energie Baden-Württemberg AG ENBW Laura Herrmann, Joscha Fürniß
- Karlsruher Institut für Technologie KIT Martina Gamba, Fabian Jeschull
- LiCORNE-Consortium

L. Herrmann, H. Ehrenberg, M. Graczyk-Zajac, E. Kaymakci, T. Kölbel, L. Kölbel, J. Tübke, Lithium recovery from geothermal brine – an investigation into the desorption of lithium ions using manganese oxide adsorbents, Energy Adv. 2022, 1, 877, DOI: 10.1039/D2YA00099G.

^[1] New EU regulatory framework for batteries Setting sustainability requirements, EPRS | European Parliamentary Research Service, https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/689337/EPRS_BRI(2021)689337_EN.pdf